
Automating Juniper Devices
The Later Years

Rudolph Bott bott@sipgate.de @rbo_ne

Who is
sipgate?

❖ VoIP Provider since 2006

❖ MVNO since 2012

❖ ~220 colleagues

❖ Düsseldorf, Germany

Why Are
We Doing This?

❖ ~830 servers

❖ ~300 hardware boxes

❖ Debian Linux all the way

❖ Multiple sites

❖ AS15594

❖ Public and private BGP peerings

❖ Ansible all the things!

Our Environment

Our Network Environment

MX204

QFX5100

EX4300

Y tho?

❖ VoIP needs a stable network

❖ Some Juniper devices are slow

❖ Manual testing is tedious

❖ Automation should save time

❖ Git Repository

❖ Ansible (junos_config module)

❖ AWX

❖ Jinja2 templates

❖ python-yamale (YAML schema validation)

❖ pytest + ruby-junoser (template testing)

Network Automation Toolbox

How We Play
the Automation Game

How We Play the Automation Game

❖ jinja2 template != Junos configuration

❖ Share code between your devices

❖ Build Ansible roles for device usecases, not for device types

How We Play the Automation Game

How We Play the Automation Game

Ask Your Network
How It’s Doing

Ask Your Network How It’s Doing

❖ Juniper devices support command results in plaintext, XML or JSON

❖ junos_command converts JSON to python data structures

❖ detect system alerts, interface or MC-LAG/VRRP/OSPF errors etc.

Ask Your Network How It’s Doing

Ask Your Network How It’s Doing

❖ Gain more confidence in everyday-deployments

❖ Validate a network operating system update

❖ Run entire testsuite against lab

Test Driven
Template Development

Test Driven Template Development

❖ Test Driven...what?

➢ Write your unit test first and let it fail

➢ Adapt your software until the test passes

➢ Change your test to reflect a new requirement and let it fail

➢ Adapt your software until the test passes

➢ Repeat

Test Driven Template Development

Changing larger Junos/Jinja2 templates is not easy

Test Driven Template Development

Step One: build your configuration (e.g. on a lab device)

Test Driven Template Development

Step Two: build your template

Test Driven Template Development

Step Three: generate sample data

Test Driven Template Development

?

Step Four: render template and compare

Test Driven Template Development

Rinse and repeat: Build/change your desired config, break the test, fix the template (& sample data)

Test Driven Template Development

Jinja2 Template Test Data Result

Test Driven Template Development

❖ pytest

➢ Python-native testing framework

➢ Magic glue for all components

➢ Easy integration of YAML/Jinja2

➢ Visual support in IDEs

Test Driven Template Development

Test Driven Template Development

Test Driven Template Development

❖ What is junoser?

➢ Parses any given Junos configuration

➢ Syntax validation

➢ translates between config and set syntax

➢ http://xml.juniper.net/junos/18.3R3/junos or ask your device

Test Driven Template Development

❖ The abstract of this talk said something about Docker?

➢ Disclaimer: we are not a ruby shop

➢ Hide magic in docker container

➢ Integrate it with python-docker into pytest-based testsuite

Test Driven Template Development

❖ For each template, store sample data (YAML) and the expected result

❖ Read the sample data

❖ Render the template

❖ Convert to set syntax and compare

❖ Fail or move on to the next template

Validate Your
YAML Files

Validate Your YAML Files

❖ Someone introduces a new variable

❖ Someone forgets to remove a variable

❖ What the heck are the possible values for this variable?!

❖ Ansible templates choke on missing variables

Validate Your YAML Files

❖ Basic types: integer, float, string, boolean, null, lists

❖ optional/required variables

❖ defined sets of values

❖ content like IPv4, IPv6 addresses or dates

❖ custom strings through regexes

Validate Your YAML Files

❖ How to use python-yamale?

➢ integrated in pytest

➢ integrated in Ansible

github.com/sipgate/ansible-module-yamale

Validate Your YAML Files

Wrap Up

Wrap Up
❖ Structure your Ansible playbooks / roles

❖ Avoid code duplication with abstract Ansible roles

❖ Avoid complicated templates

❖ Split into different Ansible roles before things get messy/complicated

❖ Use Ansible to get instant feedback from your network

❖ Use tests to validate templates before deploying them

❖ Use YAML schema validation to avoid extra/missing variables or illegal values

Rudolph Bott bott@sipgate.de @rbo_ne

Get Your Hands Dirty

Rudolph Bott bott@sipgate.de @rbo_ne

github.com/sipgate/ansible-juniper-cookbook

